Chapter 10 Probability

- **10.1 Sample Spaces and Probability**
- 10.2 Independent and Dependent Events
- 10.3 Two-Way Tables and Probability
- 10.4 Probability of Disjoint and Overlapping Events
- 10.5 Permutations and Combinations
- 10.6 Binomial Distributions

Probability Experiment

1 of 20

A probability experiment is an action, or trial, that has varying results.

Outcomes

BAD

Vocabulary

- Outcome The possible results of a probability experiment.
- Event A collection of one or many outcomes.
- Sample Space The set of all possible outcomes.

Experiment: Roll two 6-sided dice

- Sample Space The set of all possible outcomes: roll 1/1, or 1/2, or 1/3, ..., or 6/4, or 6/5, or 6/6
- Event A set of outcomes, usually expressed as a capital letter (e.g. A = "sum of dice = 7")
- Probability of an Event The chance that an event
 "A" will happen or P(A).

Possible		First Die					
	Sums		•	••	• •	••	•••
	•	2	3	4	5	6	7
	•	3	4	5	6	7	8
d Die	••	4	5	6	7	8	9
Second Die	• •	5	6	7	8	9	10
		6	7	8	9	10	11
	•••	7	8	9	10	11	12

Probability of an Event

- A measure of the likelihood, or chance, that the event will occur.
- Probability is a number from 0 to 1, including 0 and 1, and can be expressed as a decimal, fraction, or percent.

Calculating Probability

5 of 20

Theoretical Probability = Number of Favorable Outcomes

Total Number of Outcomes

Experiment: A student guesses on four true/false questions. What is the probability the student will make exactly two correct guesses?

 Build a Model - The table below represents incorrect (I) and correct (C) answers.

	Number correct	Outcome		
	0	IIII		
	1 two ct 3	CIII ICII IIIC		
exactly to		IICC ICIC ICCI CIIC CICI CCII		
		ICCC CICC CCIC		
	4	CCCC		

$$\frac{\text{Number of Favorable Outcomes}}{\text{Total Number of Outcomes}} = \frac{6}{16} = \frac{3}{8} = 37.5\%$$

The Complement of an Event

7 of 20

• The probability of not event A, or $P(\overline{A})$, is computed by

$$P(\overline{A}) = 1 - P(A)$$

- For example, we found the probability of getting exactly two correct answers was 3/8 or 37.5%.
- The probability of getting exactly zero, one, three, or four correct (not exactly two) is

D(A) = 1 + 0.275			
P(A) = 1 - 0.375	Number correct	Outcome	
=0.625=62.5%	0	IIII	
	1	CIII ICII IIIC	
exactly t	→ 2	IICC ICIC ICCI CIIC CICI CCII	
Conce	3	ICCC CICC CCIC CCCI	
	4	CCCC	

Example: Roll two 6-sided dice

8 of 20

Solve for the following probabilities.

P(A) = 1 - P(A)

- a) The sum is not 6.
- b) The sum is less than or equal to 9.

Possible		First Die					
	Sums		•	•••	• •	••	•••
•		2	3	4	5	6	7
	•	3	4	5	6	7	8
d Die	•••	4	5	6	7	8	9
Second Die	• •	5	6	7	8	9	10
		6	7	8	9	10	11
	•••	7	8	9	10	11	12

Geometric Probability

• The ratio of two lengths, areas, or volumes.

Example

- event A = hit the inside red bull's eye
- Calculate P(A)

Experimental Probability

10 of 20

- The results of repeated trials of a probability experiment.
- Success A favorable outcome.

Experimental Probability =
$$\frac{\text{Number of Successes}}{\text{Number of Trials}}$$

Example

 Repeated spins of the color spinner produced the following results.

Spinner Results					
red green blue yellow					
5	9	3	3		

• Find experimental probabilities of the colors. e.g. P(red), etc.

Color Spinner

Vocabulary

11 of 20

- Independent Events Two (or more) events whose outcomes of one <u>does not</u> affect the other.
- Dependent Events Two (or more) events whose outcomes <u>do</u> affect each other.

Independent or Dependent?

- a) Rolling two dice.
- b) Picking two numbered slips from a bag without putting any back.

Probability of Independent Events

12 of 20

Two events A and B are independent events if and only if the probability that both events occur is the **product** of the probabilities of the events.

 $P(A \text{ and } B) = P(A) \cdot P(B)$

Example

Rolling two 6-sided dice. What is the probability of rolling two sixes?

Example - Independent or Dependent?

13 of 20

A group of five students include three boys and two girls. Mr
Greenstein randomly selects one to be the <u>speaker</u> and a
different student to be the <u>recorder</u>. Determine whether
randomly selecting a <u>boy first</u> and randomly selecting a
<u>different boy second</u> are independent.

Sample Set
Speaker/Recorder

B1,B2	B2,B1	B3,B1	G1,B1	G2,B1
B1,B3	B2,B3	B3,B2	G1,B2	G2,B2
B1,G1	B2,G1	B3,G1	G1,B3	G2,B3
B1,G2	B2,G2	B3,G2	G1,G2	G2,G1

Example - Independent or Dependent? 14 of 20

A group of five students include three boys and two girls. Mr
Greenstein randomly selects one to be the <u>speaker</u> and a
different student to be the <u>recorder</u>. Determine whether
randomly selecting a <u>boy first</u> and randomly selecting a
<u>different boy second</u> are independent.

Sample Set Speaker/Recorder

B1,B2	B2,B1	B3,B1	G1,B1	G2,B1
B1,B3	B2,B3	B3,B2	G1,B2	G2,B2
B1,G1	B2,G1	B3,G1	G1,B3	G2,B3
B1,G2	B2,G2	B3,G2	G1,G2	G2,G1

P(first boy) =
$$12/20 = 3/5$$

P(second boy) = $12/20 = 3/5$
 $3/5 * 3/5 = 9/25 = 36\%$

P(boy first and boy second) = 12/20 (1st three cols) * 3/4 (row) = 3/10 = 30%

Dependent because probabilities are not equal.

Conditional Probability

15 of 20

The probability that event B occurs given that event A has occurred is called the conditional probability of B given A.

P(B | A)

Example: What is the probability of choosing G1 given you already chose G2 as speaker? In other words: **P(G1 | G2)**?

Sample Set						
	Speak	er/Red	corder			
B1,B2	B2,B1	B3,B1	G1,B1	G2,B1		
B1,B3	B2,B3	B3,B2	G1,B2	G2,B2		
B1,G1	B2,G1	B3,G1	G1,B3	G2,B3		
B1,G2	B2,G2	B3,G2	G1,G	G2,G1		

Conditional Probability

16 of 20

Fail

Example: A quality-control inspector checks for defective parts. The table shows the results of the inspector's work. Find (a) the probability that a defective part "passes," and

(b) the probability that a non-defective part "fails."

Defective	3	36
Non-defective	450	11

a.
$$P(\text{pass} | \text{defective}) = \frac{\text{Number of defective parts "passed"}}{\text{Total number of defective parts}}$$

$$=\frac{3}{3+36}=\frac{3}{39}=\frac{1}{13}\approx 0.077$$
, or about 7.7%

b.
$$P(\text{fail} | \text{non-defective}) = \frac{\text{Number of non-defective parts "failed"}}{\text{Total number of non-defective parts}}$$

$$=\frac{11}{450+11}=\frac{11}{461}\approx 0.024$$
, or about 2.4%

Probability of Dependent Events

17 of 20

If two events A and B are dependent events, then the probability that both events occur is the **product** of the probability of the **first event** and the **conditional probability of the second event** given the first event.

 $P(A \text{ and } B) = P(A) \cdot P(B|A)$

Probability of Dependent Events

18 of 20

Example

 $P(A \text{ and } B) = P(A) \cdot P(B|A)$

Picking two numbered slips randomly from a bag of numbered slips without putting any back.

- a) What is the probability of choosing 2 and then 3?
- b) What is the probability of choosing 1 or 4 and then 5?

Revisiting Conditional Probability

19 of 20

Start with the probability of dependent events:

$$P(A \text{ and } B) = P(A) \cdot P(B|A)$$

Using algebra, divide each side by P(A).

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

Formula for Conditional Probability

Calculating Probability

20 of 20

Example

You randomly select 3 cards from a standard deck of 52 playing cards. What are the chances they are all hearts when:

- a) you place the cards back into the deck before you choose again?
- b) you do not place the cards back into the deck before choosing again?

Independent $P(A \text{ and } B) = P(A) \cdot P(B)$ Dependent $P(A \text{ and } B) = P(A) \cdot P(B|A)$

